
ZeroAccess

ZeroAccess

James Wyke

SophosLabs UK

ZeroAccess

Abstract

ZeroAccess is a sophisticated kernel-mode rootkit that is rapidly becoming one of the

most widespread threats in the current malware ecosystem. ZeroAccess’ ability to run on both

32-bit and 64-bit versions of Windows, resilient peer-to-peer command and control infrastructure

and constant updates to its functionality over time show that ZeroAccess is a modern threat

capable of thriving on modern networks and modern Operating Systems.

 In this paper we will explore the ZeroAccess threat; from the distribution mechanisms

used to spread it, through the installation procedure, memory residence and payload. We

examine how ZeroAccess works and what its ultimate goal is.

ZeroAccess

Contents

ZeroAccess .. 4

Distribution ... 5

Exploit Packs .. 5

Social Engineering .. 5

Dropper ... 7

Installation... 8

Pseudo Random Domain Generator.. 11

32-Bit Installation ... 12

64-Bit Installation ... 15

Memory Residence ... 16

Rootkit... 16

Payload .. 18

Conclusion .. 21

References ... 22

Appendix ... 23

P2P RC4 Key .. 23

RSA Public key ... 23

ZeroAccess

ZeroAccess

ZeroAccess is a dangerous threat that has been circulating for several years. SophosLabs

has recently seen the number of machines infected with ZeroAccess increase sharply as there has

been a proliferation of samples appearing in the wild.

The following graph shows the upwards trend in the number of unique ZeroAccess related

samples seen by SophosLabs over the last 7 months:

In the time that ZeroAccess has been in the wild there have been a number of revisions,

with modifications to its functionality, infection strategy and its persistence mechanisms on an

infected machine. However, the core purpose has remained: to assume full control of the

machine by adding it to the ZeroAccess botnet and to monetize the new asset by downloading

additional malware.

Primarily ZeroAccess is a kernel-mode rootkit, similar in ethos to the TDL family of

rootkits. It uses advanced techniques to hide its presence, is capable of functioning on both 32

and 64-bit flavors of Windows from a single installer, contains aggressive self defense

functionality and acts as a sophisticated delivery platform for other malware.

0 10000 20000 30000 40000 50000 60000 70000

Aug-11

Sep-11

Oct-11

Nov-11

Dec-11

Jan-12

Feb-12

Unique Samples

ZeroAccess

Distribution

Infection vectors for ZeroAccess are very similar to other high profile malware families

currently circulating in the wild. Although not entirely comprehensive the main distribution

methods for ZeroAccess can be split into two categories: Exploit Packs and social engineering.

Exploit Packs

ZeroAccess has become an increasingly popular payload to the various Exploit Packs

currently on the market, in particular BlackHole [1]. An exploit pack typically comes as a series

of php scripts that are stored on a web server under the control of the attacker. When a victimôs

browser accesses the loaded website the server backend will attempt to exploit a vulnerability on

the target machine and execute the payload. Exploit packs usually contain a great many different

exploits targeting applications commonly found on Windows PCs such as Internet Explorer,

Acrobat, Flash and Java.

Traffic is driven to websites hosting Exploit Packs through a variety of means. A

common method is through the use of compromised sites. Legitimate sites that have been

compromised by the attacker (often through stolen FTP credentials or SQL injection) are used to

both host the exploit packs themselves and as redirectors to the main attack site. Typically, small

amounts of JavaScript code are inserted into pages of a compromised website that will send the

user to the attack site. Ad servers have also been compromised in this way which can result in

widespread infection very quickly if the ads are served to high profile websites. SEO (Search

Engine Optimisation) techniques are used to drive compromised websites up search engine

rankings, increasing the traffic that gets sent to the attack site. We have also seen this delivery

method initiated through email. An email is spammed out containing a link that when clicked

sends the victim to a compromised website hosting an Exploit Pack. Exploit Packs as an

infection vector for ZeroAccess are very effective and usually requires no input from the victim

other than browsing to an apparently legitimate website or clicking an innocuous-seeming link.

Social Engineering

The second main infection vector for ZeroAccess is through a variety of social

engineering techniques. At the heart of these is the goal of convincing a victim into running an

executable that they should not. The lure is often a piece of illicit software such as a game or a

copyright protection bypassing tool such as a crack or keygen. These Trojanised files are placed

on upload sites and on torrents and given filenames designed to trick the unwary into

downloading and running them.

The following is an example of a file purporting to be a keygen for DivX Plus 8.0 for

Windows. The file would be placed onto upload sites or offered as a torrent. The file is in fact an

NSIS self extractor that contains the advertised keygen program but also contains an encrypted

ZeroAccess

7zip file. When executed the self extractor unpacks the keygen program to

ò%Profile%\Application Data\Keygen.exeò and executes it:

[fig_1.png]

 But in the background the 7zip file is dropped, extracted and the single file inside (the

ZeroAccess dropper) is executed. By observing API calls the 7zip password can be ascertained:

[fig_2.png]

 Here is an example where the lure was a copy of the game Skyrim [2]. Again the installer

is an NSIS archive. This time a file is dropped to ò%Profile%\Application

Data\skyrimlauncher.exeò and a screen is shown that purports to be the game installer:

ZeroAccess

[fig_3.png]

 While once again in the background an encrypted 7Zip file is dropped, extracted and the

contents executed, installing ZeroAccess.

Dropper

ZeroAccess droppers have changed as the rootkit itself has evolved. Currently, droppers

are usually packed with one from a group of complex polymorphic packers.

These packers are a typical example of the protection measures that modern malware

employs to both hinder analysis and to attempt to avoid detection by security tools. They are

updated several times a day and are always checked against AV scanners before they are

released into the wild. These packers contain a great many anti-emulation and anti-debug

techniques designed to defeat emulators inside AV engines and to make analysis inside a

controlled environment more difficult. The dropper has recently been using hardware

breakpoints as part of its unpacking routine which makes attaching a kernel debugger to the

target system (necessary to analyse the kernel-mode components) more challenging.

ZeroAccess

An interesting feature of ZeroAccess droppers is that a single dropper will install the 32-

bit or the 64-bit version of the malware depending on which OS it is executed under.

Installation

 At installation ZeroAccess will first ascertain if it is running on 32 or 64-bit Windows.

This is achieved using the ZwQueryInformationProcess [3] API with ProcessWow64Information

as the ProcessInformationClass parameter:

[fig_4.png]

This is where the decision between 32 bit and 64-bit installation path is made. The

installer will then attempt to give itself SE_DEBUG_PRIVILEGE [4] privileges using

RtlAdjustPrivileges:

[fig_5.png]

If this is successful then installation will continue as normal, if the attempt fails (usually

because the process has been executed by a normal user) then ZeroAccess will attempt another

method of privilege escalation.

ZeroAccess

 ZeroAccess must elevate its privileges to install successfully, but in order to do this from

a non-administrator account on UAC enabled versions of Windows, a UAC popup will appear.

End users are more likely to be suspicious of a file they have just downloaded from the internet

that they thought was an illegal keygen, crack or hacked version of a game; they may also be

suspicious if an unknown exe file causes a UAC popup while the user is browsing the web

(exploit pack infection vector). As a result the user may choose not to allow the program to

proceed, thus ZeroAccess installation may fail. To bypass this possible problem ZeroAccess

disguises itself by forcing the UAC popup to appear to come from a different, benign-seeming

program. A clean copy of the Adobe Flash Installer (InstallFlashPlayer.exe) is dropped to a

temporary directory and the DLL load order of Windows [5] is abused to ensure that ZeroAccess

is loaded into the clean fileôs process address space when it is executed. By dropping a DLL

called msimg32.dll (one of the DLLôs that InstallFlashPlayer.exe imports) into the same

directory as the Flash installer file, Windows will load this DLL in preference to the genuine

msimg32.dll because Windows looks in the current directory before the system directory when

loading DLLôs:

[fig_6.png]

 This means that the UAC popup now appears to be generated by the genuine Adobe

Flash Installer which is much more likely to be authorized:

ZeroAccess

[fig_7.png]

 The Flash installer will then continue while ZeroAccess silently infects the system in the

background, even if Flash is already installed:

[fig_8.png]

 ZeroAccess will next go about lowering security on the infected machine by disabling a

number of Windows security related services. The Windows Firewall is turned off and updates

will no longer be retrieved from Microsoft. The full list of services that it will attempt to disable

is below:

BFE (Base FilteringEngine Service)

iphlpsvc (IP Helper service)

mpssvc (Windows firewall service)

WinDefend (Windows Defender service)

 wscsvc (Windows Security Center Service)

 WinHttpAutoProxySvc (Proxy Auto Discovery Service)

ZeroAccess

Pseudo Random Domain Generator

 During installation many ZeroAccess samples will report back to an IP address embedded

inside the executable with information about the infected machine. This is carried out with an

HTTP Get request with the ñHostò field of the request set to a pseudo-randomly generated ñ.cnò

domain.

 The generated domain name does not exist and does not need to exist as it is never looked

up and no attempt is made to connect to any URL on the generated domain. The domain uses the

current date and a seed value and one domain will be generated per day:

[fig_10.png]

ZeroAccess

 This DGA (Domain Generation Algorithm) system is used in various places throughout

ZeroAccess where communication needs to take place over HTTP. If the exact same HTTP

request is made with an incorrect ñHostò field in the HTTP request then an empty response will

be returned. In this way it is used as a pseudo-authentication system to verify that the server is

only talking to a genuine ZeroAccess instance and not anything else such as security researchers

or search bots. The locale and the architecture of the infected machine are also added to the get

request in the ñUser-Agentò field:

[fig_11.png]

The rest of ZeroAccess installation is markedly different on 32 and 64-bit platforms.

32-Bit Installation

When installed under 32-bit Windows ZeroAccess will install a kernel-mode rootkit. To

load its code into the kernel an existing driver will be overwritten on disk. The original driver file

and any subsequent files downloaded by ZeroAccess will be stored in encrypted form on a part

of the disk not normally accessible to other applications.

 The stealth technique used by ZeroAccess to hide its files has changed over time.

Previous versions created an entire hidden volume to store their files but recent versions have

used a much simpler but no-less effective technique. A directory is created under

ñ%systemroot%ò with a name designed to look like a legitimate directory created when a

Microsoft patch is installed. The directory name will be similar to:

ñc:\windows\$NtUninstallKB35373$ò with the last five digits being specific to the victim

machine. Files stored inside this folder are encrypted using a modified version of RC4 and to

ZeroAccess

make the folder inaccessible to programs using standard Windows APIs it is made into a

symbolic link pointing to ñ\systemroot\system32\configò:

[fig_12.png]

 The ACL (Access Control List) on the directory is also changed so that the target of the

link cannot be browsed to:

[fig_13.png]

ZeroAccess

 However, if the raw disk is accessed or the directory is examined offline from a Linux

OS the contents can be seen:

[fig_14.png]

 If the symlink directory is ignored and the full path is provided the encrypted files can

also be accessed:

[fig_15.png]

A special device is created that the rootkit uses to read and write into the hidden folder,

decrypting and encrypting files on the fly, and the LowerDeviceObject of the DR0 device of

\Driver\Disk is hooked to hide the overwritten driver.

ZeroAccess

64-Bit Installation

Under 64-bit Windows ZeroAccess does not use any kernel-mode code; all its execution

takes place in user memory. The same technique of dropping the Flash Installer is used to elevate

privileges. Reboot persistence is achieved through a file dropped into the userôs AppData folder

and a registry entry under HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon:

[fig_16.png]

Again ZeroAccess attempts to make its files difficult to access, this time using no rootkit

behaviour but by hiding inside the Global Assembly Cache (GAC). The GAC is a machine-wide

cache of .NET assemblies used by Windows. It is located at %windir%\assembly. To view

assemblies and add new ones, the Assembly Cache Viewer is used which is integrated into

Explorer. When the GAC directory is browsed then the Cache Viewer is launched:

[fig_17.png]

ZeroAccess

The Cache viewer does not display the contents of the directory but displays information

about the installed assemblies. ZeroAccess abuses this functionality by creating a directory

inside the GAC folder and storing its files there. These files will not be observable by any casual

user who browses the folder with Explorer but they can be seen if the Cache Viewer shell

extension is disabled or from the command line:

[fig_18.png]

Memory Residence

Once ZeroAccess is in memory there are two main areas of activity: the rootkit and the

payload.

Rootkit

If running under 32-bit Windows ZeroAccess will employ its kernel-mode rootkit. The

rootkitôs purpose is to:

¶ Hide the infected driver on the disk

¶ Enable read and write access to the encrypted files

¶ Deploy self defense (some versions)

The primary function of the rootkit component of ZeroAccess is to hide the changes

made to the driver that was infected during installation. This is achieved by hooking the

ZeroAccess

LowerDeviceObject of the DR0 device of \Driver\Disk. A copy of the clean driver is stored in

memory. Any process that attempts to read the infected driver from the disk will be presented

with the clean driver.

 If any of the components of ZeroAccess want to read or write to files stored inside the

hidden folder then they need to do this without using the normal Win32 APIs as Windows will

see the folder as a symbolic link and not realize it is also a genuine folder with files inside. The

files also need to be decrypted to make any sense out of them. The rootkit driver facilitates

seamless read and write to the hidden folder by creating a device named

ACPI#PNP0303#2&da1a3ff&0. When files are accessed through this device they are decrypted

on the fly.

 Many versions of ZeroAccess employ aggressive self defense that is designed to protect

the rootkit from security and AV software. A process is created that is monitored by the rootkit.

If any application attempts to open this ñbaitò process then the rootkit will attack that application.

The bait process has data stored in an Alternate Data Stream so the process name appears with a

colon inside it:

[fig_19.png]

First, the ACL of the file for the process that has opened the bait process is changed so

that the file can no longer be executed, using ZwSetSecurityObject:

[fig_20.png]

ZeroAccess

 The process itself is then attacked by injecting shell code into it that will terminate the

process. This means that on ZeroAccess infected systems many security tools will be terminated

and the ACL on their files will need to be changed before they can be executed again. This

symptom is a good indicator of ZeroAccess infection and it would appear that the authors may

have decided that this is too good an indicator of infection as most recent samples no longer

include the self defense.

Payload

The payload of ZeroAccess is to connect to a peer-to-peer botnet and download further

files. The network communication is initiated both from the kernel driver itself and from a

component injected into user memory, usually inside either the address space of explorer.exe or

svchost.exe, by the driver.

When initially installed, ZeroAccess includes with it a file that contains a list of 256

(0x100) IP addresses. Each IP address is followed by a dword time value that probably indicates

the last contact time for each IP address as the list is sorted by the time value, highest first. This

is the initial list of peers that the infected machine knows about in the botnet. The bot will

attempt to contact each IP address in the list on a fixed port number that is stored inside the bot

executable file. Once a successful connection is made commands will be issued. The bot also

listens on the same high numbered TCP port that outgoing connections use, thus it attempts to

become another node in the peer-to-peer botnet. However, it should be noted that the infected

machine will need to be directly accessible from the internet with a public IP address for other

peers to connect to it. Otherwise the infected machine will effectively become a passive node

that can only connect to other nodes and obtain data; it cannot be connected to by other nodes.

All communication across the peer-to-peer network is encrypted with RC4 using a fixed

key. This key has been observed to be the same for all variants of ZeroAccess encountered, even

variants that use different port numbers and are instructed to download different types of

malware. Upon successful connection to another node the bot will first issue a ógetLô command.

This command is regularly repeated and is the main way of keeping up to date with other nodes.

The other node then responds with a óretLô command which includes the list of 256 (IP address,

time) pairs that it currently holds and a list of files and timestamps for each file that it has

downloaded. This keeps new nodes in the botnet updated with the currently accessible peers. A

ógetFô command is then issued by the bot for each file contained in the list. This downloads the

file and stores it under the hidden folder. Some variants will also store the downloaded files in a

directory under the userôs %AppData% path. Each downloaded file contains a resource named

ñ33333ò that contains a digital signature for the file. The bot verifies the signature is genuine

using an RSA public key embedded inside it before the file is executed:

ZeroAccess

[fig_21.png]

ZeroAccess has been seen to be downloading two main families of malware. The first is a

type of click fraud [6] malware that appears to be very tightly bound to ZeroAccess, so much so

that it may have been authored by the ZeroAccess owners. This malware can redirect browser

search results to URLôs of the authorôs choosing and will periodically query a server that will

send back an xml file that contains a list of URLôs and referrer URLôs:

ZeroAccess

[fig_22.png]

 The infected machine will send HTTP requests to each URL specified in the ñ<url>ò tag

with the Referer field of the HTTP request set to the URL from the ñ<ref>ò field. This generates

income for the affiliate whose ID is embedded in the referrer URL. The click fraud payload can

be said to be very tightly bound to ZeroAccess itself because the same DGA (Domain

Generation Algorithm) is used to generate the Host field of the HTTP request when retrieving

URL data:

[fig_23.png]

The other main payload is a spambot. When this payload is downloaded it installs itself,

downloads spam templates and target email addresses and sends spam. It is likely that the

authors of the spambot are renting a portion of the ZeroAccess botnet to deliver their malware.

 The two differing version are most easily identified by the port numbers that they use. The

click fraud downloading variant tends to use ports 21810 and 22292 whereas the spambot

downloading variety uses port 34354.

ZeroAccess

Conclusion

We have explored where ZeroAccess infections come from, how the rootkit establishes

control over a system and what activities it carries out once installed.

We can say that ZeroAccess is an advanced malware delivery platform that is controlled

through a difficult to crack peer-to-peer infrastructure. Once it gains a foothold on a system it

can be very difficult to remove. It has adapted as its target environment has evolved, adding

compatibility for 64-bit architectures and multi-user, multi-privilege systems.

ZeroAccess remains hidden on an infected machine while downloading more visible

components that generate revenue for the botnet owners. Currently the downloaded malware is

mostly aimed at sending spam and carrying out click fraud, but previously the botnet has been

instructed to download other malware and it is likely that this will be the case again in the future.

ZeroAccess should be considered an advanced and dangerous threat that requires a fully

featured, multi-layered protection strategy.

ZeroAccess

References

[1] Sophos Security Threat Report 2012, Anatomy of an attack: Drive-by downloads and

Blackhole, http://www.sophos.com/en-us/security-news-trends/reports/security-threat-

report/html-09.aspx

[2] Skyrim, http:// www.elderscrolls.com/skyrim/

[3] http://msdn.microsoft.com/en-us/library/windows/desktop/ms687420%28v=vs.85%29.aspx

[4] http://msdn.microsoft.com/en-us/library/windows/desktop/bb530716%28v=vs.85%29.aspx

[5] http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586%28v=vs.85%29.aspx

[6] http://en.wikipedia.org/wiki/Click_fraud

http://msdn.microsoft.com/en-us/library/windows/desktop/bb530716%28v=vs.85%29.aspx
http://en.wikipedia.org/wiki/Click_fraud

ZeroAccess

Appendix

P2P RC4 Key

 The RC4 key used in all P2P communications is the MD5 of the fixed dword value:

0xCD6734FE.

RSA Public key

 The RSA public key used to verify the signature on the downloaded files uses a 512 bit

modulus, shown here. (By current cryptographic standards, this is considered weak.)

-----BEGIN PUBLIC KEY-----

MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAM6rnSxDOEEP8safnkTPWes+fNxaJtBc

Mc8rAjpE3hgC0ZQBxCAb48WQ8UmH4UDnSTMK0rCaqgG7vzfktgQUVYsCAwEAAQ==

-----END PUBLIC KEY-----

Detection names used by Sophos Anti-Virus

1. Infected files will be detected and blocked as Mal/ZAccess-x, Troj/ZAccess-x, Mal/Sirefef-x

or Troj/Sirefef-x , where x denotes an alphabetic suffix (-A, -B, etc.) On a properly-protected

system, this should prevent infection in the first place.

2. Active processes will be reported and blocked by the Sophos run-time HIPS (Host Intrusion

Detection System) as HPmal/ZAccess-A. This gives an extra layer of safety by providing

proactive detection and prevention even of samples which evade detection in (1) above.

3. The Zero Access rootkit itself will be detected in kernel memory, and can be cleaned up, as

Troj/ZAKmem-A. This means that the malware can be remediated even on systems where

the rootkit is already active and stealthing.

